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Abstract
While the mathematical laws of uncontrolled epidemic spreading are well known, the statistical
physics of coronavirus epidemics with containment measures is currently lacking. The modelling
of available data of the first wave of the Covid-19 pandemic in 2020 over 230 days, in different
countries representative of different containment policies is relevant to quantify the efficiency of
these policies to face the containment of any successive wave. At this aim we have built a 3D phase
diagram tracking the simultaneous evolution and the interplay of the doubling time, Td, and the
reproductive number, Rt measured using the methodological definition used by the Robert Koch
Institute. In this expanded parameter space three different main phases, supercritical, critical and
subcritical are identified. Moreover, we have found that in the supercritical regime with Rt > 1 the
doubling time is smaller than 40 days. In this phase we have established the power law relation
between Td and (Rt − 1)−ν with the exponent ν depending on the definition of reproductive
number. In the subcritical regime where Rt < 1 and Td > 100 days, we have identified arrested
metastable phases where Td is nearly constant.

1. Introduction

While the mean-field theory of intrinsic dynam-
ics of uncontrolled epidemics is well known [1, 2],
nowadays the scientific discussion is focusing on the
dynamics of epidemics with containment measures
[2–5], addressing the role of extrinsic effects due to
the spatio-temporal evolution of contact networks
[6–9]. In this work we verify proposed mathematical
laws driving coronavirus 2020 epidemics with con-
tainment measures (called here CEwCM). Different
epidemiology protocols such as lockdown, case find-
ing, mobile tracing (LFT) [10–16] and lockdown stop
and go (LSG) [17–19] has been applied by different
countries.

While many works [20–30] have analyzed short-
time intervals of the CEwCM, here we analyse the

full-time window of the first Covid-19 wave in:
(i) South Korea, which applied the LFT policy com-
pared with (ii) Italy and (iii) United States of Amer-
ica which applied the LSG policy with strict and
loose rules, respectively. We have verified the physi-
cal laws of the time evolution of the CEwCM [24–30]
using a new 3D expanded parameter space Td(t, Rt):
where Td and Rt are the time-dependent doubling and
reproductive number.

In CEwCM time evolution three main regimes are
clearly identified: supercritical, critical and subcritical.
The regimes supercritical, with Rt > 1 and subcritical
with Rt < 1 are defined in epidemic spreading theo-
ries in references [4, 5]. In a previous work [10] we
have considered the critical regime occurring when
1 < Rt < 1.1. Correspondingly, it was found that the
time dependent Td values are Td < 40 days in the
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supercritical phase, Td > 100 in the subcritical phase
and [40 < Td < 100] in the critical phase.

We have verified here that in the first wave the
supercritical phase is characterized by the Td =CK (Rt

− 1)−ν power law function of the variable doubling
time Td versus the reproductive number Rt . The key
point of this work is the use of the log–log plots of
Td versus (Rt − 1) to understand the time evolution
of coronavirus in different countries adopting differ-
ent containment policies. Finally, we provide a quan-
titative comparison of the Covid-19 first and second
wave evolution in Italy compared with South Korea
and USA.

2. Methods

The data for each country have been taken from the
recognized public data base OurWorldInData [31].
We have extracted, first, the time-dependent dou-
bling time Td from the curve of total infected cases,
Z(t), and, second, the time-dependent reproductive
number Rt from the curve of active infected cases,
X(t), using the methodological definition provided by
the Robert Koch Institute [31]. Thus, the strategy in
our methodological approach has been the extraction
of two time dependent parameters (1) the doubling
time, Td, and (2) the reproduction number, Rt , from
two independent datasets: Td has been extracted from
the total cases while Rt has been obtained from the
active cases.

2.1. The basic doubling time Td0 and basic
reproductive number R0

Figure 1(a) shows a pictorial view of the viral epi-
demic spreading starting with the uncontrolled epi-
demic in the early days of the outbreak with a basic
reproductive number R0 = 2 and the basic doubling
time Td0 = 2 days (which separates successive nth gen-
erations with 2n infected persons). In the early days
the cumulative curve of the total number of cases Z (t)
increases exponentially with a characteristic rate α

Z (t) = Z (0) eαt = Z (0) 2
t

Td0 (1)

therefore, the basic doubling time

Td0 =
log (2)

α
(2)

has been quickly extracted by several groups show-
ing that it is in the range 2 < Td0 < 2.8 days with
2 < R0 < 3, as reported in several works. [19]

2.2. Time evolution law of the time-dependent
doubling time Td and reproduction number Rt in
the 3D phase diagram Td(t, Rt )
As the epidemic goes forward, the total number of
cases Z (t) will include both the active cases and
the removed (recovered) individuals. The time evo-
lution of the epidemics modified by extrinsic effects

of the containment measures is tracked by the time-
dependent doubling time, Td. The time-dependent
Td of coronavirus 2020 epidemics is obtained by fit-
ting the cumulative curve Z (t) over a five days period
centered at t ±Δt with Δt = 2 days. Td has been
evaluated by taking the time derivative of the cumu-
lative curve Z (t) over five days of the logarithm of the
cumulative infection curve d

dt log (Z (t)) = α (t) =
log(2)
Td(t) that leads to

Td (t) =
log (2)

d
dt log (Z (t))

. (3)

The time-dependent variable reproductive num-
ber Rt can be measured by different methods
[2–7, 32–34]. In this work we have used the model
independent procedure proposed by the Robert Koch
Institute [33], where Rt is the ratio of the actually
infected individuals X(t) at time t divided by the
actually infected individuals at the time (t −Δt):

Rt (t) =
X (t)

X (t −Δt)
. (4)

The relationship between the time-dependent
doubling time Td and the reproductive number Rt

as defined by the Robert Koch Institute [33] can be
derived by considering that

Z (t +Δt) = 2
Δt
Td Z (t) = exp

(
log (2)

Δt

Td

)
Z (t)

∼=
(

1 + log (2)
Δt

Td

)
Z (t)

(5)

,where the equality holds true if Δt < Td.
Hence, we find that

Rt (t) − 1 = log (2)
Δt

Td (t)
(6)

and
Td (t) = CK(Rt (t) − 1)−1 (7)

with CK = Δt log (2).

3. Results and discussion

3.1. The three-dimensional parameter space
Td(t, Rt )
Figure 1(b) shows the expanded three-dimensional
parameter space Td(t′, Rt) proposed in this work. The
joint plot of Td, and Rt calculated as a function of
time provides an exhaustive description of the epi-
demic spreading during the time interval t′ = t −
t0 = 230 days, where t0 is the day onset of the first
wave of Covid-19 outbreak in the three studied coun-
tries. The gray slab indicates the critical regime where
40 < Td < 100 days and Rt∗ ∼ 1. Around the time
t∗ the curve of the active infected cases X(t) of the
Covid-19 epidemic wave reaches the maximum of
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Figure 1. (a) Pictorial view of the epidemic growth starting with basic reproductive number, R0, and basic doubling time, Td0.
Containment measures in the supercritical phase of epidemic spreading reduce the reproductive number Rt and lengthen the
doubling time Td. (b) The 3D phase diagram where the doubling time Td(t ′, Rt ) is plotted as a function of t ′ = t − t0 and the
effective reproductive number Rt for South Korea (green) Italy (red) and USA (black). The gray space indicates the critical
crossover where 40 < Td<100 days separates the supercritical phase (Td < 40 days; Rt > 1) from the subcritical phase (Td > 100
days; Rt < 1). (c) Log–log plot of doubling time Td vs Rt in the three countries. In the orange supercritical regime all curves of the
three countries are fitted by the function Td = C(Rt − 1)−ν , with exponent v = 0.7. The data in the subcritical regime, green area,
where Td > 100 days and Rt < 1, show the incoherent disordered behaviour. The critical phase is confined within the horizontal
gray dashed strip where 40 < Td < 100 days. (d) Td and Rt as a function of t ′ = t − t0 in the three selected countries. In the
supercritical regime in the yellow areas the doubling time (gray curve) increases in the range 2 < Td < 40 days and the
reproductive number Rt decreases down to 1. In the subcritical phases, indicated by the light blue areas, Td increases to a
maximum and Rt decreases up to a minimum and it extends up to the point where they cross again in the critical regime. The
green area identifies the subcritical regime for Rt < 1 and Td > 100 days where the epidemic spreading is arrested. Finally, the
gray area identifies the critical regime where 1 < Rt < 1.1 and 40 < Td < 100 days.

a dome. The critical zone separates the supercritical

regime from the subcritical regime.

The supercritical regimes occurs in the lower part

of figure 1(b) characterized by a shorter doubling time

Td < Td(t∗) = 40 days, for t′ < t∗ and a larger repro-

ductive number Rt > 1 which occurs where the curve

of the active infected cases X(t) is growing. The sub-

critical regime occurs in the upper part of figure 1(b)

where Td > 100 days and Rt < 1, i.e. where the curve

X(t) is decreasing. Figure 1(c) shows the projection of

the 3D plot in the Td –Rt plane for the three consid-

ered countries. This figure allows us to verify that in

the supercritical regime (orange area) Td(Rt) follows

the universal power law of equation (8) characterized

by the divergence of Td(Rt) while approaching Rt = 1

(thick dotted line).

Figure 1(c) shows that in the orange supercriti-
cal regime all curves of the three countries are fit-
ted by the function Td(t) = C(Rt(t) − 1)–ν with
ν = 0.7.

In the subcritical phase we see a random distri-
bution of the data pairs (Td, Rt) in the green area.
The critical phase is indicated by the full gray slab as
in the 3D plot of figure 1(b), which corresponds to the
range [40–100] days of the doubling time Td and the
reproductive number in the range 1 < Rt < 1.1. The
supercritical regime is indicated by the yellow areas,
ranging from the outbreak threshold time t0 and the
day t∗, where Td(t∗) reaches the value of 40 days. The
straight line Td in the semi-logarithm scale in the yel-
low region shows that in the supercritical regime, the
doubling time Td follows the universal exponential
law [10, 27]

Td(t) = A e(t−t0)/s (8)

3
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where t0 is the time of the onset of the outbreak and
s (called the s-factor) is the characteristic time of the
applied containment policy [10, 27]. In some coun-
tries, particularly those where the mitigation mea-
sures were not strict, we do not observe an initial
exponential growth [35, 36]. This is not the case
of Covid-19 pandemic in the considered countries
where data analysis show a clear exponential behavior
described by equation (8).

Figure 1(d) shows both Td and Rt vs the time t′ =
t − t0 for each country. The upper panel shows that
the time lapse interval of the supercritical phase t∗ −
t0 = 24 days for the yellow region of South Korea is
related with the small s-factor (6–7 days) which are
both a factor 2.5 shorter than the s-factor of Italy and
USA where 60 < (t∗ − t0) < 70 days, which imply a
time duration of the first wave lockdown a factor 2–3
longer.

The subcritical phase occurs when Td becomes
larger than 100 (light blue areas) and Rt drops below
1 (green areas). In this phase the data (green area in
Figure 1c) show the incoherent disordered behavior.
The critical phase is confined within the horizontal
gray dashed strip where 40 < Td < 100 days.

Italy reached a well-defined subcritical phase
extending in the green area due to the enforced strict
rules of the imposed lockdown. On the contrary, the
plot shows that in USA, where loose rules for the lock-
down have been applied, the transition to the sub-
critical regime has been stopped, and the country
remained for a very long time in the critical phase.
This approach shows that the subcritical phase in
South Korea remained close to the critical phase and
faced a second Covid-19 very short wave indicated by
the yellow area. We underline that the second wave in
South Korea lasted only 20 days with a doubling time
longer than 40 days. The shape of the second wave in
South Korea clearly shows the efficiency of the applied
contact tracing to keep the spreading under control,
to reduce the lockdown to a minimum time and to
reduce the number of fatalities.

3.2. The relation between the reproductive
number Rt and Td in our work and in alternative
approaches
The attempts to fit the pandemic data available for the
different countries by using the SIR model with esti-
mations for τ i and τ r values that are inferred from
clinical studies have failed to reproduce the exper-
imental trends. The reason is that the SIR model
is too simplistic, using a time independent τ i and
τ r to reproduce quantitatively the trend of the dif-
ferent pandemic curves in the presence of differ-
ent containment policies. There are several factors
that determine a deviation of the trend predicted by
the SIR model from the experimental one. As an
example: the presence of asymptomatic individuals
(not reported in experimental data) that are capa-
ble of spreading the infections could be accounted

in a susceptible–infected–removed (SIR) model by
‘overestimating’ the infective capability of the symp-
tomatic individuals. Moreover the SIR model fails to
give account of the experimental data because of the
negligible variation of the susceptible population dur-
ing the first wave in the three countries investigated
in this work. The varation of the susceptible popu-
lation S(t) at the end of the first wave normalized to
the maximum value S(0) at the threshold of epidemic
breakout are given by

1− S(t)/S(0)= 1− (60 360 000 − 317 000)/60360
000 = 0.0053 in Italy;

1− S(t)/S(0)= 1− (330 775 889− 7589 957)/330
775 889 = 0.0229 in USA

1 − S(t)/S(0) = 1 − (50 599 528 − 92 817)/50 599
528 = 0.0018 in South Korea.

Therefore, the maximum variation of the suscep-
tible population reported by the data bases are 0.53%,
2.3% and 0.18% for Italy, USA and South Korea,
respectively.

In this scenario several authors have discusses
the Covid-19 epidemics with containment measures
using the susceptible–infected model [4].

Barabasi in his book [7] has considered the
Susceptible–Infected–Susceptible model where the
number of infected cases in the endemic state is
I(∞) = 1 − μ/β(k), and he found the relation
between the characteristic time of a pathogen τ =

1/μ (R0 − 1) and (R0 − 1) where R0 = β(k)/μ is the
basic reproductive number which is similar to our
equation (7).

Some authors have proposed an unconventional
inverted SIR model [25, 26] where the susceptible
population (S) is assumed to be constant. In this non
conventional epidemological model the values of the
extracted infection τ i and recovery time τ r do not
agree with clinical data, but have to be considered only
as the extracted effective values of τ i and τ r by solv-
ing (‘inverting’) the SIR model. Therefore the effective
Re number extracted by the ratio between τ i and τ r

parameters, given by the inverted SIR model, deviates
from the standard epidemiological definitions.

The values of τ i and τ r extracted using the inverted
SIR model show a very large variation with time
which quantify the effect of the containment mea-
sures that have been adopted and are different from
the ‘clinical’ τ i and τ r. [37]

The Td(t, Re) phase diagram, where the effec-
tive reproduction time, namely Re, is extracted by the
inverted SIR theory [25, 26] is shown in figure 2. The
panel (a) in figure 2 shows that the transition from
the supercritical to the subcritical regime is driven by
the joint increase of τ i and decrease of τ r. The oppo-
site occurs when the subcritical to the supercritical
transition happens in metastable phases at end of the
first wave and the threshold of the second wave. In
figures 2(b) and (c) a similar analysis is performed on
the epidemic data of Italy and USA respectively. The
comparison among countries shown in figures 2(a)
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Figure 2. The unconventional Re and Td extracted by the inverted SIR model in the limit of a nearly constant susceptible
population during the first wave applied to (a) South Korea, (b) Italy and (c) USA. The upper panels show the extracted (red)
effective removal time τ r and (blue) infection time τ i as a function of t − t0. In the middle panels, we report the curves of cases
per million population, of infected (X) (red), removed Y (blue) and total cases (Z = X + Y) (black) as a function of time. The
Z(t) curve follows the Ostwald law [10, 27] (dashed line) characteristic of ordering growth in heterogeneous systems [35–37]. In
the lower panels we show Td and unconventional effective Re as extracted by the inverted SIR model to be compared with
figure 2(c) showing the Td and Rt extracted in this work. The shaded light blue area indicates the subcritical phase separating the
first and the second Covid-19 wave. In Italy this subcritical phase occurs for 60 < t ′ < 230 days. In USA there is no evidence for
the presence of a subcritical regime, the yellow supercritical phase is followed by the critical phase in the gray strip extending over
a large time interval.

and (b), 1(c) indicates different efforts in testing and
tracing. The cumulative curve Z(t) of the total num-
ber of cases of the epidemics in the supercritical phase,
slows down approaching the critical regime, where it
has been fitted by the complex Ostwald growth law
[10, 17, 38–40]

Z (t − t0) = C
{

1 − e−(t−t0)/τ
}
· (t − t0)γ (9)

which is a mixed exponential and power-law behav-
ior determined by nucleation of different phases and
ordering phenomena in complex multiphase systems
out of equilibrium [38–40]. The onset of this behav-
ior, obtained by best curve fitting, is reported by the
dashed lines in the central panels of figure 2.

The time-dependent doubling time given by

Td (t) =
log (2)

d
dt log (Z (t))

=
log (2)

d
dt Z(t)
Z(t)

(10)

can be obtained from the equation for τi (t). I In the
framework of the SIR model, we obtain the following
expression for Td

Td (t) = log (2) τi (t)
Z (t)

X (t)
(11)

Td (t) = log (2) τr (t)
Z (t)

X (t)

1

Re (t)
. (12)

The doubling time Td calculated using
equation (12), has been plotted in figure 2 with
the effective reproduction number Re, computed
within the inverted SIR model. The Td(t) curve
estimated with the inverted SIR model agrees with

the Td curve estimated from the epidemic data
(shown in the lower panels of figure 2).

At variance the effective Re curves exhibit differ-
ences from the reproductive number Rt obtained in
this work using the Robert Koch Institute method
shown in figure 1. Nevertheless, the time where the
critical regime occurs, i.e. when both Rt and Re are
equal is the same in the predictions by the inverted
SIR approach.

The large value of τ r ≈ 100 days during the early
days or during the whole period have to be interpreted
as the lack of testing and tracing cases, not certainly as
the presence of individuals that are capable to transfer
the infections for a such long time.

3.3. The universal power law relation between
time-dependent doubling time, Td, and
reproduction number, Rt , in the supercritical
phase
Log–log plot of the doubling time Td as a function
of Rt − 1 and Re − 1 in the three countries are com-
pared in the upper and lower panels of figure 3. The
Rt values are higher than Re calculated with inverted
SIR method. Although the difference, the Td vs Rt − 1
behavior in the two approach appears qualitatively
similar. We get the critical exponent ν = 1, using Re

− 1 extracted by the mean-field inverted SIR model.
We have used Rt as defined by the Robert Koch

Institute method with Δt = 5 days which gives a val-
ues of Rt in qualitative agreement with other methods.
[34] Fitting the data we have found

Td (t) = CK(Rt (t) − 1)−ν (13)
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Figure 3. Log–log plot of doubling time Td in three countries as a function of Rt − 1 extracted by the inverted SIR model (upper
panels) and by the Robert Koch Institute empirical method (lower panels). Black dots in the yellow region indicate Td in the
supercritical regime which follows the universal analytical power law function [Td = C(Rt − 1)−ν] of a divergent Td approaching
Rt = 1 fitted by the red dashed lines. The critical exponent ν is 1 in the inverted SIR model (upper panels) and 0.7 using Robert
Koch prescriptions with 5 days interval (lower panels). The critical phase is described by the horizontal gray strip where 40 < Td

< 100 days. The green dots in the blue light area indicate the metastable states in the subcritical regime where the epidemic
spreading growth is arrested Td > 40 days also if Rt > 1. While the metastable state in Italy in the subcritical (green dots) with
Td = constant indicates a precursor of the second wave regime in South Korea the loop of the curve (green dots) in the critical
regime (gray strip) is determined by the second wave shown in the lower panel of figure 2(a). In USA the epidemic spreading
never entered in the subcritical phase and reversible oscillations (Rt decreasing is inducted by red dots) and are observed in the
critical regime.

with the exponent ν ≈ 0.7 ± 0.05 in the three stud-
ied countries. We have estimated Rt with the Robert
Koch Institute method [33] using different time inter-
vals Δt = 3, 5, 7, 9, 11, and 21 days. Afterwards we
have fitted the data Td(Rt) using equation (13) in the
three selected countries using Rt measured with the
different time intervals Δt. We have found that the
exponent ν decreases by increasing the time inter-
val Δt following the stretched exponential function

ν = e−(Δt/τ)β with τ = 24.5 days and β = 0.8 shown
in figure 4. Therefore, ν → 1 for Δt → 0 as predicted
by equation (7) in agreement with the mathematical
limit for the exponent extracted by the Robert Koch
Institute method for the time interval Δt → 0.

This result is particularly relevant to predict the
onset of new epidemic waves. The onset of the super-
critical phase of successive wave will be easily detected
in the [Td, Rt − 1] or [Td, Re − 1] diagram when
dots move towards the yellow area, where the super-
critical regime will be following the universal power
law of equation (7). Figure 3 shows that in USA the
epidemics never entered in the subcritical phase and
the it has been fluctuating in the critical phase with
an increasing (black dots) and decreasing (red dots)
doubling time along with the predictions of the power
law. The rapidly aborted second wave in South Korea
is well depicted by the green dots forming the loop
in figure 3, where the containment policy succeeded

to push up the doubling-time avoiding its following
down toward the universal power law growth rate of
the first Covid-19 wave.

3.4. Metastable phases and the second wave in
Italy
In figure 3 the phase diagram of epidemic spreading in
Italy during the first wave shows the gray strip corre-
sponding to the critical regime above the supercritical
orange area, and below the subcritical regime. As pre-
viousely mentioned, in this subcritical phase the Td

vs Rt values show a non-analytical disordered distri-
bution (see also figure 1(c)), while in the supercritical
regime it is described by the analytical universal power
law of equation (7). The green dots in the Td vs Rt

plots in figure 3 show that the subcritical phase occurs
also for cases where Td > 100 although Rt > 1. When
put on a lattice, the SIR model depends on the geom-
etry of contacts, and is in the same universality class
as ordinary percolation. Rt is essentially the percola-
tion threshold for the SIR mean-field model, in fact
infection can grow without bound where Rt is greater
than 1 on a Erdős–Rényi network or a Bethe lattice
[41], while there is no percolation for Rt less than
1. However, making the network composed of closed
loops which attenuate the probability of an epidemic,
different complex geometries [42], and in presence
of long range interactions the percolating epidemic
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Figure 4. The figure shows the exponent ν in the curve Td (t) = CK (Rt (t) − 1)−ν of the doubling time Td versus Rt in the
supercritical regime, as a function of the time lapse interval Δt, used to extract Rt using the Koch Institut phenomenological
method. Different time lapse intervals Δt in the range 3 < Δt < 30 days have been used from the epidemiological data for South
Korea USA, and Italy to calculate Rt . The exponent ν as a function of the time lapse interval Δt (used to calculate Rt ) follows a
stretched exponential law ν = e−(Δt/τ)β with τ = 24.8 days and β = 0.8 showing that ν = −1 in the limit Δt → 0 days.

Figure 5. Panel (a) the curve of the active infected cases and fatalities per million populations as a function of time during the
second wave in Italy. The time is measured by the day of the year 2020 in the lower scale, and the time t ′ = t − t0 from the onset of
outbreak in Italy in the upper x scale. Panel (b) shows Td and Rt for the second wave in Italy with the same scale as in figure 1 for
the first wave in Italy. The yellow area indicates the explosive percolating epidemic regime of the second wave in Italy. Panel (c)
shows the Td versus Rt plot of the second wave (red dots) compared with the first wave (black dots) panel (d) shows the log–log
plot of Td versus (Rt − 1). The red dots in the second wave shows the first uncontrolled increase of Rt and decrease of Td up to its
peak in the time lapse interval 274 < DOY < 300 which is followed by the coronavirus epidemics controlled by containment
measures in the time range 300 < DOY < 330 which follows the power law given by equation Td (t) = CK (Rt (t) − 1)−ν with
ν = 0.7.

threshold Rt
∗ could be as large as about 1.5. [43, 44]

The plot of the Italian case unveils the unexpected
arrested metastable phases for 1.06 < Rt < Rt

∗ = 1.2
with a decreasing reproduction number at constant
doubling-time (Rt decreases while Td remains con-
stant) as indicated by horizontal arrows in the curve
(green dots) of the (Td vs Rt) plot.

After the flat metastable state in the subcritical
phase at the end of the first wave on October 7, 2020
the doubling time decreased toward the supercriti-
cal regime at the end of the zig-zag behavior where
the arrows indicate the time direction. In figure 3

the data of South Korea at the end of the flat regime
show that the efficient mobile contact tracing ele-
vated the doubling time. On the contrary in Italy the
poor contact tracing method here enforced caused
the decreasing of the doubling time with the onset of
supercritical regime of the second Covid-19 epidemic
wave.

The evolution of the second epidemic wave in Italy
between September 1 and December 13, is plotted in
figure 5. The data in panel (b) of figure 3 and the data
in figure 5 overlap in the time measured in days of
year (DOY) for the period September 1 (245 DOY)
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and October 7 (281 DOY) where we have observed
the metastable arrested phase discussed above which
can be considered either as the end of the first wave
as well as the onset of the second wave. Panel (a) of
figure 5 shows the time lapse interval where the curve
of active cases has shown its maximum increasing rate
due to the second wave in Italy. In the three panels it
is possible to see that from DOY 275 (October 1) to
DOY = 300 (October 26) the reproductive num-
ber increased from 1.05 to 1.4 while the doubling-
time decreased from Td = 102 days in the sub-
critical regime to Td = 19 days in the supercritical
regime. The rate of the growth rate of active cases
started to decrease only after DOY = 300 (Octo-
ber 26). It is remarkable that in the time period
300 < DOY < 330 days, when some strict contain-
ment rules have been enforced, the CEwCM devel-
oped again as in the same regime of the first wave fol-
lowing both equation (7) Td (t) = CK (Rt (t) − 1)−ν

and equation (8) Td(t) = A e(t−t0)/s where the s fac-
tor is about two times larger than in the South Korea
second wave shown in figure 3.

4. Conclusions

The results of this work provide an original quan-
titative approach for understanding the time evo-
lution of the Covid-19 pandemic. We show that it
is necessary to expand the parameter space, mon-
itoring the evolution of the pair of relevant vari-
ables (Td, Rt). By expanding the parameter space it
became possible to analyze in a more precise and
complete manner the data of the epidemics, probing
and tuning at the same time containment measures.
This work sheds light and provides new quantita-
tive experimental tools for the quantitative statistical
physics of this Covid-19 pandemic, but certainly also
to face future epidemic events thanks to its predicting
power.

The results of our work can be summarized as fol-
lows: the joint analysis of the doubling time Td, i.e. the
time it takes for the number of infected individuals to
double in value extracted from the cumulative curves
of total (infected plus removed) cases, combined with
the reproductive number Rt , i.e. the average number
of infected persons by a single positive case, extracted
from the cumulative curves of the number of active
infected cases, provide complementary information
on the efficiency of the applied containment poli-
cies. Therefore, the proposed approach could be used
to dynamically control and to improve the effects of
mitigation policies.
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